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of the basic tenets of free-radical biology that autoxidation 
of PUFA in vivo, and particularly lipids in membranes, is 
responsible for important biological conseq~ences .3~*~~ The 
extent to which cyclic peroxides, endoperoxides, and PG 
analogues, with either natural (i.e., enzymatically pro- 
duced) or unnatural structures, may be involved in free- 
radical biology obviously warrants considerable further re- 
search effort. The second hypothesis suggested by our work 
is that PG-like endoperoxides decompose both thermally 
and under the mild acid catalysis of the TBA test to pro- 
duce malonaldehyde, and that endoperoxides are the prin- 
cipal nonvolatile precursor of malonaldehyde under our 
conditions. 
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A New Approach for the  Stereocontrolled 
Synthesis of Acyclic Terpenes 

Summary: A short stereoselective approach to farnesol, 
geranylgerAnio1, and dimethyl 3,7-dimethyl-(E,E)-2,6-de- 
cadiene-1,lO-dioate based upon the regioselectivity and 
stereospecificity of allylic alkylation via n-allylpalladium 
complexes is reported. 

Sir: The problems of synthesizing trisubstituted double 
bonds of defined geometry came to the fore in the squalene 
problem.'* Renewed interest developed as a result of the 
structural elucidation of the juvenile hormone.Ib The acy- 
clic polyisoprenoids in general represent an important class 
of natural products because of their myriad of applications 
as well as their importance as biosynthetic intermediates. 
We wish to report (1) an unusual chemospecificity in the 
formation of a-allylpalladium complexes, (2) a stereoselec- 
tive approach to acyclic terpenoids2 involving a direct 
homologation of simpler building blocks, (3) a new ap- 
proach to prenylation, and (4) the first application of n-al- 
lylpalladium complexes in natural products synthesis.3 

Treatment of methyl geraniate with palladium chloride 
under standard conditions4 (PdC1, NaC1, CuC12, NaOAc, 
HOAc, 95O, 68%) gave a single n-allylpalladium complex, 
mp 117-118', assigned structure l5 (see Scheme I). The 
NMR spectrum indicated that the E-a,@-unsaturated sys- 
tem was intact [6 5.74 (9, 1 H, 2.18 (s, 3 H)] and the stereo- 
chemistry of the n-allyl unit was syn [6 3.75 (s), 3.50 (t, J = 
7 Hz), 2.70 (s), each 1 HI. The preference for the nonconju- 
gated double bond is somewhat surprising in light of the 
importance of the acidity of the abstracted hydrogen on the 
rate of formation of a-allyl complexes6 and by consider- 
ation of the usual factors affecting stability of the initial 
olefin-palladium a complex.' Thus, n basicity of the olefin 
appears to be the predominant factor determining this che- 
mospecificity . 
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Scheme I 
q3- 1 -[ lt-(3t-Methyl-4r-carbomethoxy-( E)-3r-butenyl)]- 

2-methyl-a-allylpalladium Chloride Dimer as a 
Synthona 

U C 0 2 C H 3  - M C O ~ C H J  
'*i-\ 

PdC1/2 
1 

4 

COICH, 

OH 
7 

OH 
0 All yields are for compounds purified by chromatography or 

distillation and are not optimized. NaCH(CO&H3)2, diphos, 
THF, 25', _I8 hr, LiI, 3H20, NaCN, DMF, 120°, 17 hr. 
d (CH3)2C-CH-C(SO*Ph)COzCH? Na+, diphos, THF, 25', 24 hr. 
I Dibal, PhCH<-hexane, -40° to Oo. f Li/C2HeNHZ, -78'. 

Formation4 of the a-allyl complexes from methyl farne- 
soate also involve only the nonconjugated double bonds 
with a preference for the sterically less crowded terminal 
olefin (2:3, 9:1).* The enoate system of Z9 [6  5.63 (1 H, s), 

COICHS 

PdCII2 
2,9076 

+ 

2.15 (3H, s)] and the central trisubstituted double bond [6 
5.12 (1 H, m), 1.61 (3 H, brs)] are unaffected. The .n-allyl 
system is syn [6  3.69 (s), 3.54 (m), 2.65 (s), each 1 H, 2.06 (3 

Activation of complex 1 by adding 1,2-bis(diphenylphos- 
H, 911. 

phino)ethane allows smooth condensation with dimethyl 
malonate with complete regioselectivity and stereospecific- 
ity. Decarbomethoxy1ationl0 completes this short stereose- 
lective synthesis of the dimethyl ester of a pheromone of 
the Monarch butterfly (4).11 

Prenylation was accomplished using the anion derived 
from the sulfone ester 5, mp 60-70°, available as shown in 
eq 1. NMR analysis indicates this material to be a 1.8:l 

HOAc. PhH 

n ACHo + PhSO2CH2COICHJ 

DeamStark trap. 
81%. 

5a 5b 

mixture of the conjugated and unconjugated isomers 5a [ 6  
7.18 (d, J = 11 Hz), 3.10 (m), 1.12 (d, J = 7 Hz)] and 5b [6  
5.12 (d, J = 11 Hz), 4.62 (d, J = 11 Hz), 1.76 (s), 1.58 (s)]. 
Since both give the same anion, their separation is obviat- 
ed. Conversion to their anion (NaH, THF, room tempera- 
ture) and alkylation with 1 produced 6 [6 5.64 (1 H, s), 5.35 
(1 H, s), 5.19 (1 H, m), 3.12 (1 H, d, J = 15 Hz), 2.94 (1 H, 
d, J = 15 Hz)] as the sole product. The stereochemistry of 
the 6,7 double bond as E was indicated by the NMR spec- 
trum (6 1.60, 3 H, s) and the subsequent conversion to all- 
trans-farnesol. Decarbomethoxylation and reduction of the 
ester produced the hydroxy sulfone 7 which was reductive- 
ly cleaved to all-trans-farnesol, identical with an authentic 
sample.12 Spectros~opicl~ and chromatographic analysis 
did not reveal the presence of other geometric isomers. 

The utility of this approach is further illustrated by the 
prenylation of methyl farnesoate to geranylgeraniol (see 
Scheme 11) using the same sequence as above. Alkylation 

Scheme I1 
Synthesis of GeranylgeraniolO 

?OaPh 

C02CH3 
8 

$OzPh 

d e  C02CH3 + 3 
81% 98% 

$OH \ \ 
All yields are for product after purification by chromatography 

or distillation and have not been optimized. (CH&C-CH-C- 
(S02Ph)CO&Hs Na+, PhsP, THF, 25', 20 hr. LiI, 3Hz0, NaCN, 
DMF, 120°, 17 hr. 

. . . . . . . . 

Dibal, PhCHa, -4OO. e Li/CZHsNHz, -78'. 

proceeded without any detectable (by NMR) formation of 
alternative isomers, The alkylation product 8 showed five 
olefinic methyl groups [6 2.13 (3 H), 1.76 (3 H), 1.56 (6 H), 
and 1.44 (3 H)], four vinyl protons [6  5.58 (8, 1 H), 5.28 (8 ,  1 
H), 5.16 (m, 2 H)], and a clean AB (J = 15 Hz) pattern ( 6  
3.10 and 2.76) for the C-12 methylene group. The standard 
methods of decarborhethoxylation and reduction com- 
pleted the synthesis of geranylgeraniol. 
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The direct and chemospecific prenylation of simpler ter- 
penes to more complex terpenes should prove to be a useful 
approach to such compounds. The fact that trisubstituted 
double bonds can be created with complete stereochemical 
control enhances the utility of this scheme for such a pur- 
pose. 
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Reductions with Copper Hydride. New Preparative 
and Mechanistic Aspects 

Summary: Simple copper hydride reagents are described 
which reduce conjugated carbonyl compounds to the satu- 
rated derivatives; a special effect of added sec-butyl alco- 
hol allows reduction of acrylates and labeling experiments 
establish the sources of the added hydrogens. 

Sir: Since the first suggestions of unique reduction reac- 
tions promoted by complex copper hydrides,’ related re- 

agents have been shown to be of general utility for conver- 
sion of organic halides and sulfonate esters to hydrocar- 
b o n ~ , ~ - ~  and for conversion of a,P-unsaturated ketones into 
saturated  ketone^.^?^ The reagents suggested to be most ef- 
fective are obtained by generation of CuH at -50°, solubil- 
ization with a second ligand, and filtration at  low tempera- 
t ~ r e . ~ , ~  No general procedures for reduction of cY,&unsatu- 
rated esters have been reported. 

Using the general technique of earlier workers,lY2 we 
have developed simple preparations of effective copper- 
based reagents which provide efficient 1,4 reduction of 
both conjugated ketones and esters, including two exam- 
ples of acetylenic esters. The reductions show features as- 
sociated with electron-transfer processes, including a dra- 
matic increase in efficiency in difficult cases with 2-butanol 
in the medium. In contrast to reduction of halides to hy- 
drocarbons,2 these reactions involve transfer of a hydrogen 
atom from the copper hydride to carbon, specifically the @ 
carbon of the unsaturated carbonyl system. 

The complex hydrido-metallic species are prepared ac- 
cording to eq 1 and 2. The species involving the lithium 
cation (eq 1, here referred to as Li complex) and the paral- 
lel species with the sodium cation (eq 2, Na complex) are 
obtained as brown-black suspensions in tetrahydrofuran by 
simply mixing the reagents at  0’ under argon and stirring 
for 30 min. A series of unsaturated ketones and esters were 
studied in reaction with both the Li complex and the Na 
complex; the more efficient conversions are displayed in 
Table I. Cyclic enones are best reduced with the Li com- 
plex, as the Na complex gives lower yields (60-70%). With 
chalcone and the ester examples, the Na complex gives bet- 
ter results, especially in the presence of excess 2-butanol. 
In the examples of entries 6, 7, 9, and 10, high molecular 
weight products were the main products with the Li com- 
plex and with the Na complex in the absence of added alco- 
hol. 

n o  

2LiAlH(OCH& + CuBr “Li complex” (1) 
THF 

00 

7°F 
NaAlH2(0CH&H20CH& + CuBr 

“Na complex” (2) 

The procedure is exemplified by the reduction of methyl 
3,4,5-trimethoxycinnamate. Vitride6 (70% in benzene, 2.24 
ml, 16.0 mmol of hydride) was added dropwise to a suspen- 
sion of cuprous bromide7 (1.44 g, 8.0 mmol) in 15 ml of 
THF at Oo. After 30 min, the mixture was cooled to -78O 
and 2-butanol(1.6 ml, 18.0 mmol) was added, followed by a 
solution of methyl 3,4,5-trimethoxycinnamate (252 mg, 1.0 
mmol) in 4 ml of THF. The mixture was stirred a t  -20° for 
2 hr, quenched with 4 ml of water, and poured into saturat- 
ed aqueous ammonium chloride. After dilution with ether, 
the organic layer was washed successively with water and 
aqueous ammonium chloride solution and concentrated to 
afford a residue of essentially pure methyl (3,4,5-tri- 
methoxypheny1)propionate. Short-path distillation [goo 
(0.01 Torr)] gave a pure sample: 242 mg, 93% yield. 

The reductions of 2,2,6,6-tetramethylhept-4-en-3-one 
and methyl cinnamate were studied in some detail. Both Li 
complex and Na complex give high yields and selective 1,4 
reduction with the ketone. Neither reagent gives high 
yields of methyl 3-phenylpropionate when allowed to react 
with methyl cinnamate in THF. In this case, a major prod- 
uct (isolated in 20-28% yield) is dimethyl meso-3,4-diphen- 
yladipate ( lh9 The formation of 1, an example of hydrodi- 
merization characteristic of electrolytic reduction,1° and 
the tendency to form higher molecular weight products 


